Nick Ioannidis

nickioan@cs.ubc.ca nickioan.github.io

Education

Sep. 2023 - Present Vancouver, Canada	University of British Columbia Master of Science, Computer Science Supervisor: Professor Michiel van de Panne Thesis Topic: Environment Aware Planning using Diffusion Models for Humanoid Characters
Sep. 2017 - Apr. 2023	University of British Columbia
Vancouver, Canada	Bachelor of Applied Science, Engineering Physics (with distinction)

Research Experience

May 2024 - Present	Planning and Control for Humanoid Characters UBC · Motion Control and Character Animation Group (MOCCA) Supervised by Professor Michiel van de Panne
	• Ongoing project on how to leverage diffusion models for footstep planning of humanoid characters while satisfying constraints [In Submission]
	• Ongoing project on how to learn walking controllers for humanoid characters using reinforcement learning in imitation-free settings [In Submission]
May 2022 - Aug. 2022	Exploring New Sampling Methods for Off-Policy RL UBC · Department of Computer Science Supervised by Professor Mark Schmidt
	• Developed new non-uniform sampling methods for off-policy reinforcement learning in continuous control environments
	• Implemented newly proposed sampling algorithms in PyTorch, designed and developed visualizations for experimental setup
Sep. 2021 - Apr. 2022	Alzheimer's Disease Classification with Transformer-Based Methods <i>UBC</i> · <i>Canary Cognition Research Group</i> Supervised by Professor Hyeju Jang
	• Explored transfer-learning methods for Language Models in small target dataset settings
	• Implemented fine-tuning techniques for Language Models and improved baseline performance on AD classification
May 2021 - Aug. 2021	Non-Uniform Sampling in Off-Policy RL UBC · Department of Computer Science Supervised by Professor Mark Schmidt
	• Explored different sampling methods for off-policy reinforcement learning in continuous control
	• Trained multiple agents on Mujoco benchmarks using DeepMind Control Suite on high performance computing
	• Co-wrote paper published in NeurIPS 2021 Deep RL Workshop

Publications

1. Nicholas Ioannidis, Jonathan Wilder Lavington, and Mark Schmidt. An empirical study of non-uniform sampling in off-policy reinforcement learning for continuous control. In *Deep RL Workshop NeurIPS 2021*, 2021

Other Work Experience

Jun. 2020 - Apr. 2021	 Machine Learning Engineer UBC-MRI Research Centre Implemented and trained on different architectures for volumetric segmentation such as 3D U-nets and V-nets in PyTorch Studied physical properties of microstructures in order to generate synthetic ones Augmented sparse dataset by populating scans with synthetic microstructures using Matlab and Julia
Jan. 2019 - Apr. 2019	 Software Engineer Craft Metrics Implemented backend system for customer provisioning using Go Further developed and integrated data pre-processing system from real-time data with main pipeline in Python
Jun. 2018 - Sep. 2018	 R&D Electrical Engineer Recycling Alternative Reconfigured a series of compost reactors and designed a data collection system in Python Established a Master-Slave communication between a main Raspberry Pi and various Arduino's Designed and implemented a control loop for each reactor to measure temperature, humidity levels, carbon dioxide, and ammonia concentrations in various initial conditions
Projects	
Jan. 2024 - May 2024	 Grounding LLM Plans via Simulation Context UBC · CPSC 532V: Commonsense Reasoning in Natural Language Processing Investigated a potential solution on improving the planning capabilities of LLMs by providing feedback to generated plans through environment interaction
Sep. 2023 - Dec. 2023	 Robot-to-Robot Transfer for Quadruped Locomotion UBC · CPSC 554X: Machine Learning and Signals Used motion-imitation objectives with RL on reference motions from the Open-X Embodiment dataset to learn a policy for quadruped robots with different morphologies

Sep. 2022 - May 2023	State Estimation and Quadruped Locomotion
	$UBC \cdot CPSC$ 448A: Directed Studies supervised by Professor Michiel van de Panne
	• Implemented state estimator for the Solo8 quadruped robot, following the work o

- Implemented state estimator for the Solo8 quadruped robot, following the work of MIT's Biomimetic Robotics Lab
- $\bullet\,$ Designed URDF model of the Stella quadruped robot for RaiSim physics engine
- Built RL environment using the gym framework for the Stella quadruped robot to train on simulation

Sep. 2022 - Dec. 2022	Automatic Curriculum Generation for Hard Exploration Tasks in Minecraft UBC · CPSC 532S: Multimodal Learning with Vision, Language and Sound
	\bullet Generated task traversal curriculum for Minecraft agent using GPT-3
	• Implemented PPO with Self-Imitation Learning and integrated it with Minecraft gym environment
Sep. 2022 - Dec. 2022	Survey on Domain Adaptation for Sim-to-Real Transfer in Robotics UBC · CPSC 532M: Machine Learning and Data Mining
	• Conducted literature review on methods for Domain Adaptation in vision control robotics for Sim-to-Real transfer
Sept. 2021 - Apr. 2022	Open Sim2Real: a cost-effective robotic platform for RL research UBC · ENPH 479: Engineering Capstone II
	• Built a monopod robot inspired by the design from the Open Dynamic Robot Initiative
	• Implemented a simulated model and designed a training environment using the gym framework
	• Trained on popular reinforcement learning algorithms (PPO, SAC) and successfully performed standing and balancing tasks in both simulation and the physical robot
Sep. 2019 - May 2021	Open Robotics Software Lead UBC Engineering Design Team
	• Implemented control algorithms for the Turtlebot robot to perform household tasks using ROS and Python
	• Utilized multimodal inputs (audio and video) for navigation tasks
	• Ranked second place and won the people's choice award in Robocup@Home International Challenge
Jan. 2020 - Apr. 2020	Artifact Removal and Biomarker Segmentation UBC · EECE 571T: Advanced Machine Learning
	• Performed artifact removal and biomarker segmentation for follicular lymphoma TMA cores using UNets
Sept. 2019 - Dec. 2019	Automated License Plate Detection Vehicle UBC · ENPH 353: Engineering Physics Project I
	• Designed simulated robot in Gazebo integrated with ROS
	 Performed automated vision-controlled navigation
	• Trained neural network model for license plate detection

Teaching

Sep. 2024 - Dec. 2024	Graduate Teaching Assistant $UBC \cdot CPSC 533V$: Learning to Move
Jan. 2024 - Apr. 2024	Graduate Teaching Assistant UBC · CPSC 340: Machine Learning and Data Mining

Sep. 2023 - Dec. 2023	Graduate Teaching Assistant UBC · CPSC 314: Computer Graphics
Sep. 2022 - Apr. 2023	Undergraduate Teaching Assistant UBC · ENPH 353: Engineering Physics Project I

Scholarships and Awards

2022	 NSERC Undergraduate Student Research Award, \$6000 Awarded to students demonstrating exemplary qualities for research in natural sciences
2019	UBC BASc Dean's Honour List Designation
	• Awarded to students in the Bachelor of Applied Science Program at UBC in any Winter Session with a sessional average of at least 80% while taking 30 or more credits.
2019	NSERC Experience Award, \$4500
	• Awarded to companies for access to talented natural sciences and engineering undergraduate students for a work term.

Skills

Programming Languages	Python, C++, MATLAB, Julia, Go
Machine Learning Libraries	PyTorch, Tensorflow
Robotics Software	ROS package management (Colcon, CMake), Git, Ubuntu Linux
Embedded Systems	NVIDIA Jetson, Raspberry Pi, Arduino, STM32
Mechatronics	Machine shop, Electrical prototyping, CAD (Onshape, Solidworks)
Spoken Languages	English, Greek